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Abstract

The tritare is a new stringed musical instrument comprised of six networks of strings instead of six single
strings. Each of the networks is called 3-string. We analyze the timbre of the tritare by studying the
vibrations of the 3-strings. We show that for a real 3-string, i.e. a physical model rather than a theoretical
model, the frequency spectrum is composed of only non-harmonic frequencies which leads to a very unique
tone color.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Stringed instruments have played a central role in the history of music and in contemporary
music. Among stringed instruments, the guitar is one of the most widely played. Many types of
guitars have been invented to take advantage of one or more aspects of string vibrations. For
example, acoustic guitars can be considered as a system of coupled vibrators where the string
vibrations excite those of the set of pieces making up its resonator. By comparison, the string
vibrations on an electric guitar transfer almost no energy to its body. In the present paper, we
investigate the timbral properties of a new stringed instrument called the tritare.
Vibrations in all traditional stringed instruments occur along string sections whose two

extremities are fixed. The new stringed instrument, which we have called tritare, is comprised of
planar networks of string sections instead of single string sections. Each network of strings
see front matter r 2004 Elsevier Ltd. All rights reserved.
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Fig. 1. Schematic of one of the six superposed 3-strings of the tritare, which vibrate perpendicularly to the planes

containing them at rest.
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consists of three tightly stretched flexible sections of string connected at one common extremity.
This common extremity, or junction point, is mobile while all other extremities are fixed (see Fig.
1). The acoustic properties of these networks, called 3-strings, can be studied by analyzing the
small amplitude vibrations that are perpendicular to the plane containing the network at rest. The
numbers of studies on the vibrations of string networks are still very limited. In-depth
mathematical investigations of both the linear [1], and nonlinear [2], vibrations of networks of the
above kind have been carried out. The present papers aim is to apply certain results of Ref. [1] to
the specific 3-strings used for the tritare. We shall explain why certain important acoustic features
of the theoretical model of a 3-string considered in Ref. [1] do not apply to all material 3-strings
which can effectively be constructed. In particular, we shall see that the tritare’s networks only
vibrate according to a spectrum of essentially non-harmonic frequencies. A certain number of
particular 3-strings composed of three strings with different linear densities will be examined to
exemplify possible timbres of the tritare. The uniqueness of the sounds they produce will be
highlighted using Fourier analysis.
The rest of this paper is organized as follows. To have a clear idea of what distinguishes the

vibrations of the tritare networks from those of an ordinary string, we recall in Section 2 the main
aspects of the vibrations of the standard vibrating string. The vibrations of a 3-string are
described in general terms in Section 3. In Section 4, we apply the results of Section 3 to two sets
of 3-strings to illustrate the timbral possibilities for the tritare. Finally, Section 5 contains the
conclusion and a short discussion on perspectives.
2. The vibrations of a standard string

In this section, we recall the small-amplitude transverse vibrations of a homogenous string,
which is assumed to be perfectly flexible and elastic. The string is under uniform tension t and, in
its equilibrium position, lies along the x-axis between x ¼ 0 and L, where it is fixed. Let r be the
linear density of the string. We assume that all particles of the string move in one plane and the
tension t is sufficiently large for the effects of gravity to be negligible. All internal and external
frictions are also neglected.
Under the above assumptions, it is easily shown that the displacement at time t of the point on

the string whose abscissa is x, denoted uðx; tÞ; verifies the wave equation [3]

utt ¼ c2uxx; ð1Þ
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where c ¼
ffiffiffiffiffiffiffiffi
t=r

p
: The function uðx; tÞ must also satisfy the boundary conditions

uð0; tÞ ¼ 0; uðL; tÞ ¼ 0: ð2Þ

The vibrations begin at a certain instant of time, usually selected to be t ¼ 0: The initial conditions
of the string are usually expressed as

uðx; 0Þ ¼ FðxÞ; utðx; 0Þ ¼ GðxÞ; ð3Þ

where FðxÞ and GðxÞ; 0pxpL; are given functions representing the displacements and the
velocities of all points along the string at time t ¼ 0:
Using the classical method of separation of variables to solve Eqs. (1)–(3), we set

uðx; tÞ ¼ X ðxÞTðtÞ;

where X is a function of x only and T is a function of t only. Letting �l2 represent the separation
constant, it is straightforward to show that the eigenvalues of the above problem are l ¼ np=L;
n 2 N�: Summing over all possible values of l; it follows that the most general expression for
uðx; tÞ is

uðx; tÞ ¼
X1
n¼1

sin
npx

L
an cos

npct

L
þ bn sin

npct

L

� �
;

where an and bn are constants determined by the initial conditions (3).
The frequency f 1 ¼ c=2L corresponding to n ¼ 1 is the frequency associated with the

fundamental mode of vibration. Those corresponding to n41; i.e. f n ¼ nc=2L; are called
harmonics of the fundamental, because each f n is an integer multiple of f 1: The timbre of a note
played on a given instrument depends on the relative magnitudes of the vibration modes, an and
bn; corresponding to the different harmonics. It is this relationship between the vibration modes
that distinguishes the timbre of different musical instruments. One way to measure the
contribution of the different modes, and therefore to analyze the timbre of a sound, is to calculate
the proportion of the sound’s total energy present in each mode.
The kinetic Kn and potential Vn energies of the nth mode, n 2 N�; are given by

Kn ¼
r
2

Z L

0

½ðunÞtðx; tÞ

2 dx

and

Vn ¼
rc2

2

Z L

0

½ðunÞxðx; tÞ

2 dx:

The total energy En of the nth harmonic is then simply the sum Kn þ Vn: The total energy E of the
string is the sum of each En for n 2 N�:
Let us now consider the energies associated with the vibrations of a string whose initial

conditions correspond to plucking the string to the height h at x ¼ ðL=2Þð1þ 1=mÞ; where m 2 R;
m41: The energies Kn; Vn and En of the nth mode are then functions of m and h. It is easy to
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Fig. 2. Rðm; nÞ in terms of m. The curve legends, are ——, n ¼ 1; ���; 2; � � �; 3; � � ��; 4; ——, 5.
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show that

Enðm; hÞ ¼

16rc2h2m4ðcos np=2mÞ
2

p2Ln2ðm2 � 1Þ2
if n is odd;

16rc2h2m4ðsin np=2mÞ
2

p2Ln2ðm2 � 1Þ2
if n is even:

8>>><
>>>:

Now, since we have conservation of energy, the total energy Eðm; hÞ of all the modes of the string
is the same as its initial energy, which is the potential energy associated with its initial
displacement. One easily shows that

Eðm; hÞ ¼
2rc2m2h2

Lðm2 � 1Þ
:

The fraction of total energy in the nth harmonic is therefore given by

Rðm; nÞ ¼
Enðm; hÞ

Eðm; hÞ
¼

8m2ðcos np=2mÞ
2

p2n2ðm2 � 1Þ
if n is odd;

8m2ðsin np=2mÞ
2

p2n2ðm2 � 1Þ
if n is even:

8>>><
>>>:

ð4Þ

The graphs in Fig. 2 gives Rðm; nÞ in terms of m for n ¼ 1; 2; 3; 4; 5: Observe that m ! 1

corresponds to plucking the string at x ¼ L=2 and it is well known that the corresponding
frequency spectrum does not contain any even-numbered harmonics.
3. The vibrations of a real 3-string

The sounds produced by the tritare can be modeled as the small-amplitude transverse oscillations
of one or more of its six 3-strings. Each of these 3-strings can be comprised of sections of strings of
different linear densities and these densities can also vary from one 3-string to another.
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Let xi be the arclength parameter for the ith string at rest whose length at rest is assumed to be
li; i ¼ 1; 2; 3: We also assume that the junction point of the sections of string is located at xi ¼ 0;
i ¼ 1; 2; 3: Therefore 0pxipli: Let uiðxi; tÞ denote the functions which give the deviation from the
rest position at time t of the point at arclength position xi on the ith string. Also, let ri and ti be
the linear density and the tension, respectively, in the ith string.
Under the same assumptions as those applied in Section 2, one can show that the following

equations describe the vibrations of the 3-string [1]

ui
tt ¼ c2i ui

xixi
; i ¼ 1; 2; 3; ð5Þ

u1ð0; tÞ ¼ u2ð0; tÞ ¼ u3ð0; tÞ; ð6Þ

uiðli; tÞ ¼ 0; i ¼ 1; 2; 3; ð7Þ

X3
i¼1

c2i riu
i
xi
ð0; tÞ ¼ 0; ð8Þ

where ci ¼
ffiffiffiffiffiffiffiffiffiffi
ti=ri

p
: We are interested in the solution to problem (5)–(8) subjected to the initial

conditions

uiðxi; 0Þ ¼ FiðxiÞ; ui
tðxi; 0Þ ¼ GiðxiÞ; i ¼ 1; 2; 3; ð9Þ

where the functions Fi and Gi are respectively continuous and piecewise continuous on ½0; li
:
A normalization of the strings facilitates the solution of the above problem. Let x ¼ pxi=li for

i ¼ 1; 2; 3: It follows that 0pxpp parameterizes each string. If one defines viðx; tÞ ¼ uiðlix=p; tÞ for
i ¼ 1; 2; 3; then problem (5)–(9) becomes

vi
tt ¼

p2c2i
l2i

vi
xx; i ¼ 1; 2; 3; ð10Þ

v1ð0; tÞ ¼ v2ð0; tÞ ¼ v3ð0; tÞ; ð11Þ

viðp; tÞ ¼ 0; i ¼ 1; 2; 3; ð12Þ

X3
i¼1

c2i ri

li

vi
xð0; tÞ ¼ 0; ð13Þ

viðx; 0Þ ¼ Fiðlix=pÞ; vi
tðx; 0Þ ¼ Giðlix=pÞ; i ¼ 1; 2; 3: ð14Þ

To solve Eqs. (10)–(14), we use the method of separation of variables. We therefore set

viðx; tÞ ¼ X iðxÞTðtÞ; i ¼ 1; 2; 3; ð15Þ
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where the X i are functions of x only and T is a function of t only. The substitution of Eq. (15) into
Eqs. (10)–(14) produces

TðtÞ ¼ K1 cos lt þ K2 sin lt;

X iðxÞ ¼ Ai cos
llix

pci

þ Bi sin
llix

pci

; i ¼ 1; 2; 3;

where �l2 is the separation constant and K1;K2;A
i;Bi; i ¼ 1; 2; 3; are arbitrary constants.

Condition (11) leads to

A1 ¼ A2 ¼ A3; ð16Þ

while Eq. (13) gives

X3
i¼1

niB
i ¼ 0; ð17Þ

where we define ni ¼ ciri: Finally, Eqs. (12), (16) and (17) give the following system of equations:

A1 cos
l1l
c1

�
1

n1
ðB2n2 þ B3n3Þ sin

l1l
c1

¼ 0;

A1 cos
lil
ci

þ Bi sin
lil
ci

¼ 0; i ¼ 2; 3: ð18Þ

We shall have a non-trivial solution to Eqs. (10)–(14) if and only if l is such that Eq. (18) has a
non-trivial solution for A1; B2 and B3: It is easy to see that this occurs if and only if l is such that

X3
i¼1

ni

n1
cos

lil
ci

� �Y3
jai
j¼1

sin
ljl
cj

� �2
64

3
75 ¼ 0: ð19Þ

This equation has an infinite number of roots 0ol1pl2p � � �plnplnþ1p � � � ; with limn!1 ln ¼

1; whose actual values depend on the values of the ni; li and ci:
Let l be a solution to Eq. (19). Then either sin lil=ci

� �
a0 for i ¼ 1; 2; 3; or there exists an

i1 2 f1; 2; 3g such that sin li1l=ci1

� �
¼ 0: These two cases are linked to whether or not the real

numbers ci=li; i ¼ 1; 2; 3 are incommensurate.
We first consider the case where some of the ci=li are commensurate, i.e. when cilj=cjli 2 Q for

some i; j ¼ 1; 2; 3; iaj: Recall that we are examining the situation corresponding to a real 3-string,
i.e. a material 3-string constructed by a human being or a machine. Such a 3-string will have three
sections of strings whose lengths, tensions and linear densities are described by numbers in R: To
build a 3-string where some of the ci=li; i ¼ 1; 2; 3; are commensurate thus corresponds to
randomly choosing a rational number in a given interval of real numbers. But it is well known that
the set of rational numbers in any given interval of real numbers is a set of measure zero. The
building of a 3-string thus almost surely leads to incommensurate ci=li; i ¼ 1; 2; 3; [4].
Consequently, even if the commensurate case is a mathematical possibility, it is not interesting
in practice.
We can therefore restrict our attention to the case where the numbers ci=li; i ¼ 1; 2; 3; are

incommensurate, i.e. cilj=cjlieQ for all i; j ¼ 1; 2; 3; iaj: Let l be a solution of Eq. (19) such that
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there exists an i1 2 f1; 2; 3g with sinðli1l=ci1Þ ¼ 0: Then l ¼ n1pci1=li1 for some positive integer n1:
In this case Eq. (19) reduces to

ni1

n1
cos n1p

Y3
jai1

j¼1

sin
ci1 lj

cjli1

n1p
� �

¼ 0;

from which it follows that there exists an i2 2 f1; 2; 3g; i2ai1; and a positive integer n2 ¼

ci1 li2n1=ci2 li1 : The numbers ci1=li1 and ci2=li2 would thus be commensurate, which is a
contradiction. Consequently, Eq. (19) has an infinite number of solutions lk ¼ ak; k 2 N�; and
each ak is such that sinðliak=ciÞa0 for i ¼ 1; 2; 3: The corresponding eigenvalue is simple and the
eigenfunction is given by

PkðxÞ ¼ cos
l1akx

pc1
þ

n2
n1
cot

l2ak

c2
þ
n3
n1
cot

l3ak

c3

� �
sin

l1akx

pc1
;

�

cos
l2akx

pc2
� cot

l2ak

c2

� �
sin

l2akx

pc2
; cos

l3akx

pc3
� cot

l3a3
c3

� �
sin

l3akx

pc3

�T
:

The solution of Eqs. (10)–(14) can then be written as [1]

½v1ðx; tÞ; v2ðx; tÞ; v3ðx; tÞ
T ¼
X1
k¼1

ðak cos akt þ âk sin aktÞPkðxÞ;

where

ak ¼
hhF ;Pkii

hhPk;Pkii
; âk ¼

hhG;Pkii

akhhPk;Pkii

for

F ðxÞ ¼ ½F1ðl1x=pÞ;F2ðl2x=pÞ;F3ðl3x=pÞ
T;

GðxÞ ¼ ½G1ðl1x=pÞ;F2ðl2x=pÞ;G3ðl3x=pÞ
T;

and where the scalar product is defined by

hhFðxÞ;CðxÞii ¼

Z p

0

X3
i¼1

lirifiðxÞciðxÞ

 !
dx

for FðxÞ ¼ ½f1ðxÞ;f2ðxÞ;f3ðxÞ

T and CðxÞ ¼ ½c1ðxÞ;c2ðxÞ;c3ðxÞ


T: The solution of problem
(5)–(9) is finally obtained through the substitution

uiðxi; tÞ ¼ viðpxi=li; tÞ; i ¼ 1; 2; 3:

To determine the energy of the nth mode in a vibrating 3-string, one has to sum the kinetic Ki
n

and the potential Vi
n energies of this mode in the three sections of string i ¼ 1; 2; 3: These energies

are respectively given by

Ki
n ¼

r
2

Z l

0

½ðui
nÞtðxi; tÞ


2 dxi
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and

Vi
n ¼

r c2

2

Z l

0

½ðui
nÞxðxi; tÞ


2 dxi:

The total energy Enðm; hÞ of the nth mode is thus

Enðm; hÞ ¼
X3
i¼1

ðKi
n þ Vi

nÞ:

In the next section, we shall use the ratio Rðn;mÞ ¼ Enðm; hÞ=Eðm; hÞ; where Eðm; hÞ is the total
energy of all modes of the 3-string. In the case where the 3-string is initially plucked, the energy
Eðm; hÞ is always equal to the potential energy associated with the initial displacement of the 3-string.
4. The tritare’s timbre

The six 3-strings of the tritare have the same geometric configuration. In each 3-string, the three
sections of string form two angles of 5p=6 at the junction point and one angle of p=3: The length
of the string section between the two angles of 5p=6; which is denoted l1; is approximately twice as
long as the two other sections l2 and l3; which are approximately equal to a determined constant l
(see Fig. 1). The tensions t1; t2; t3 in the 3-strings are thus related by approximately t1 ¼ t

ffiffiffi
3

p
;

t2 ¼ t3 ¼ t; where t is a determined constant. The three string sections of each 3-string can have
different linear densities. Frets are installed under the first and longest string section. As
mentioned previously, in practice, the lengths, tensions and linear densities of the three sections of
the 3-string, as well as the fret placements, are such that the numbers ci=li with l1p2 are almost
surely incommensurate.
To analyze the timbre of a 3-string, we shall now consider the first five modes of vibration

resulting from the plucking of its first or third section to a height h at xj ¼ lj=m; where m 2 R;
m41; and j ¼ 1 or j ¼ 3: The following cases are examples of 3-strings which could be installed on
a tritare. We shall show the graphs representing the portion of the total energy in each of the first
five modes. The frequencies of the modes will be given in the captions of the figures. These
frequencies are expressed in terms of the constants l and c ¼

ffiffiffiffiffiffiffiffi
t=r

p
; where t is the tension in the

second and third string sections of the 3-string.
We start with four cases which correspond to plucking the tritare in an open position (no frets

used) for different string densities where l1 ¼ 2l and l2 ¼ l3 ¼ l: The linear density values used are
r1 ¼ r2 ¼ r3 ¼ r (Fig. 3); r1 ¼ r3 ¼ r; r2 ¼ 2r (Fig. 4); r1 ¼ 4r; r2 ¼ r3 ¼ r (Fig. 5); r1 ¼ 4r;
r2 ¼ 2r; r3 ¼ r (Fig. 6). The versions of Eq. (19) used to determine the eigenvalues for these
corresponding problems are then, respectively,

cot
2l

31=4

� �
þ

2

31=4
cot l ¼ 0;

cot
2l

31=4

� �
þ

ffiffiffi
2

p

31=4
cotð

ffiffiffi
2

p
lÞ þ

1

31=4
cot l ¼ 0;
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Fig. 3. Rðm; nÞ in terms of m for l1 ¼ 2l; l2 ¼ l3 ¼ l; r1 ¼ r2 ¼ r3 ¼ r: The graphs (a),(b) and (c),(d) are for a plucking

of the first and third sections, respectively. The curve legends, are——, n ¼ 1; ���; 2; � � �; 3; � � ��; 4; ——, 5. The

frequencies of these modes are f 1 ¼ 1:2981 c=2pl; f 2 ¼ 1:8606 f 1; f 3 ¼ 2:9396 f 1; f 4 ¼ 3:8077 f 1; f 5 ¼ 5:8073 f 1:
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cot
4l

31=4

� �
þ

1

31=4
cot l ¼ 0;

cot
4l

31=4

� �
þ

1ffiffiffi
2

p
� 31=4

cotð
ffiffiffi
2

p
lÞ þ

1

2 � 31=4
cot l ¼ 0:

The sought eigenvalues lk ¼ ak are in each case given by the positive roots of these equations
multiplied by c and divided by l [1].
For a second set of 3-strings, we set r1 ¼ r3 ¼ r;r2 ¼ 3r and l2 ¼ l3 ¼ l: These cases

correspond to plucking the tritare while fretting section 1, and therefore modifying l1; for the same
string densities. The values of l1 considered here are p l=q with p=q ¼ 2; 4

3
; 1; 2

3
: For all these four
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Fig. 4. Rðm; nÞ in terms of m for l1 ¼ 2l; l2 ¼ l3 ¼ l; r1 ¼ r3 ¼ r; r2 ¼ 2r: The graphs (a),(b) and (c),(d) are for a

plucking of the first and third sections, respectively. The curve legends, are——, n ¼ 1; ���; 2; � � �; 3; � � ��; 4; ——,

5. The frequencies of these modes are f 1 ¼ 1:1753 c=2pl; f 2 ¼ 1:8182 f 1; f 3 ¼ 2:3326 f 1; f 4 ¼ 3:0795 f 1; f 5 ¼ 3:6480 f 1:
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cases, the equation used to determine the eigenvalues is

cot
pl

q � 31=4

� �
þ 31=4 cotð

ffiffiffi
3

p
lÞ þ

1

31=4
cot l ¼ 0

for p=q ¼ 2; 4
3
; 1; 2

3
: As for the above set of four cases, the sought eigenvalues are in each case given

by the positive roots of this equation multiplied by c and divided by l. All the above eigenvalues
are easily calculated numerically using standard root-finding algorithms.
Let us now comment on the results shown in Figs. 3–10. In all these figures, the fraction of the

total energy Rðm; nÞ contained in the nth mode is plotted against m which specifies the location
where the 3-string is plucked. A first observation in all these figures when m ! 1 is that all the
curves level off and converge to constant values. This result reflects the fact that m ! 1

corresponds to plucking the 3-strings at the junction point.
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Fig. 5. Rðm; nÞ in terms of m for l1 ¼ 2l; l2 ¼ l3 ¼ l; r1 ¼ 4r; r2 ¼ r3 ¼ r: The graphs (a),(b) and (c),(d) are for a

plucking of the first and third sections, respectively. The curve legends, are——, n ¼ 1; ���; 2; � � �; 3; � � ��; 4; ——,

5. The frequencies of these modes are f 1 ¼ 0:7443 c=2pl; f 2 ¼ 2:0889 f 1; f 3 ¼ 3:1800 f 1; f 4 ¼ 4:1827 f 1; f 5 ¼ 5:1824 f 1:
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It is useful to compare Figs. 3–10 to Fig. 2, which describes the timbre of an ordinary string.
Although the fundamental mode n ¼ 1 still dominates all other modes in Figs. 3–10 when m !

1; the portion of energy it contains is always less than in the case of an ordinary string. Also, the
portion of the energy contained in the other modes (n41) is usually very different than for an
ordinary string. However, the most dramatic difference remains the fact that the frequencies are
non-harmonic because of the nature of the eigenvalue equations.
Figs. 3(a),(b) and 4(a),(b) show that the mode n ¼ 2 contains more energy than the fundamental

mode for a small interval of m, when the first section of the 3-string is plucked. In Fig. 4(c),(d), the
modes n ¼ 3 and 4 both contain more energy than the fundamental mode for any plucking in
approximately the second half (x340:5 l3) of the third section of the 3-string. We also see from
Fig. 3 that the first five modes n ¼ 1; 2; 4; 3; 5 (in this order) significantly contribute to the timbre
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Fig. 6. Rðm; nÞ in terms of m for l1 ¼ 2l; l2 ¼ l3 ¼ l; r1 ¼ 4r; r2 ¼ 2r; r3 ¼ r: The graphs (a),(b) and (c),(d) are for a

plucking of the first and third sections, respectively. The curve legends, are——, n ¼ 1; ���; 2; � � �; 3; � � ��; 4; ——,

5. The frequencies of these modes are f 1 ¼ 0:7286 c=2pl; f 2 ¼ 2:0142 f 1; f 3 ¼ 2:9321 f 1; f 4 ¼ 3:6110 f 1; f 5 ¼ 4:2824 f 1:
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when m ! 1: The situation is different for the ordinary string (Fig. 2), where only the modes
n ¼ 1; 3; 5; are present when m ! 1: Only the modes n ¼ 1; 3; 4 significantly contribute in the
case of Fig. 4 when m ! 1:
In Fig. 5 when m ! 1; about 58% and 23% of the total energy is contained in the modes n ¼ 1

and 2, respectively, compared to about 81% and 0% for an ordinary string. Fig. 6 corresponds to
a case where the mode n ¼ 3 contains almost no energy. Also in Fig. 6(c), it is apparent that the
mode n ¼ 5 dominates all of the other modes in the interval 1omp2:5: The above results suggest
that by carefully selecting the relative linear densities of the 3-strings and by plucking them at the
right locations, one can obtain a desired timbre for the instrument.
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For Figs. 7–10, where the string densities are fixed and the length of the first section varies (to
illustrate the actual playing of the instrument), we have intervals of m where the modes n ¼ 2 (Fig.
7), n ¼ 3 (Fig. 8), n ¼ 4 (Fig. 9), contain the most energy, when the first section of the 3-string is
plucked. The situation is similar but more complex when the third section of the 3-string is
plucked. In fact, we note that in some cases, the mode n ¼ 1 has less energy than several of the
higher modes for certain intervals of m. When m ! 1; the most energetic of the modes are
n ¼ 1; 3 in Fig. 7, n ¼ 1; 2; 5 in Fig. 8, n ¼ 1; 2 in Fig. 9 and n ¼ 1; 2; 4 in Fig. 10. When the third
section is plucked in Fig. 7, the modes n ¼ 2; 5 are nearly absent for almost all values of m. The
same observation applies to the mode n ¼ 4 in Fig. 9 and to the mode n ¼ 5 in Fig. 10, again when
the third section is plucked. These results confirm that the tritare’s timbre changes as it is played
(first section fretted) even if the 3-strings are always plucked in the same location.
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Fig. 7. Rðm; nÞ in terms of m for l1 ¼ 2l; l2 ¼ l3 ¼ l; r1 ¼ r3 ¼ r; r2 ¼ 3r: The graphs (a),(b) and (c),(d) are for a

plucking of the first and third sections, respectively. The curve legends, are——, n ¼ 1; ���; 2; � � �; 3; � � ��; 4; ——,

5. The frequencies of these modes are f 1 ¼ 1:0657 c=2pl; f 2 ¼ 1:8258 f 1; f 3 ¼ 2:4393 f 1; f 4 ¼ 3:1649 f 1; f 5 ¼ 3:6871 f 1:
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Fig. 8. Rðm; nÞ in terms of m for l1 ¼ 4l=3; l2 ¼ l3 ¼ l; r1 ¼ r3 ¼ r; r2 ¼ 3r: The graphs (a),(b) and (c),(d) are for a

plucking of the first and third sections, respectively. The curve legends, are——, n ¼ 1; ���; 2; � � �; 3; � � ��; 4; ——,

5. The frequencies of these modes are f 1 ¼ 1:1868 c=2pl; f 2 ¼ 1:8880 f 1; f 3 ¼ 2:6442 f 1; f 4 ¼ 2:9252 f 1; f 5 ¼ 3:8734 f 1:
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5. Conclusion

We have shown that, contrary to ordinary strings, the modes of vibration which occur in a real
vibrating 3-string correspond to frequencies which are not integer multiples of a given
fundamental frequency. However, in most situations the energy of the fundamental mode is
high enough, compared to the energies of the other modes, so that the vibrations of the 3-string
sound like that of a definite pitch instrument but without a harmonic or overtone series. This
unique frequency spectrum results in a very unique timbre for the tritare. This fact is easily seen
when we compare the graphs of Fig. 2 to those of Figs. 3–10.
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Fig. 9. Rðm; nÞ in terms of m for l1 ¼ l2 ¼ l3 ¼ l; r1 ¼ r3 ¼ r; r2 ¼ 3r: The graphs (a),(b) and (c),(d) are for a plucking

of the first and third sections, respectively. The curve legends, are——, n ¼ 1; ���; 2; � � �; 3; � � ��; 4; ——, 5. The

frequencies of these modes are f 1 ¼ 1:2647 c=2pl; f 2 ¼ 1:8602 f 1; f 3 ¼ 2:6387 f 1; f 4 ¼ 3:0346 f 1; f 5 ¼ 3:9210 f 1:
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How many different tritares is it possible to build? If we assume the existence of strings of 20
different linear densities, one can obtain 203 ¼ 8000 distinct 3-strings. A tritare with six different
3-string can then be build in 8000!=7994! ¼ 2:616� 1023 distinct ways. Every person on Earth
could thus, in principle, build thousands of billion different unique tritares.
At the time this paper was written, one electrical prototype of the tritare has been built by a

professional luthier, based on seven previous prototypes. This new instrument clearly displays a
very unique and rich timbre which, when played in certain ways (varying m), seems more related
to percussion instruments. The tritare could provide innovative musicians and composers with
very interesting and new possibilities.
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Fig. 10. Rðm; nÞ in terms of m for l1 ¼ l=3; l2 ¼ l3 ¼ l; r1 ¼ r3 ¼ r; r2 ¼ 3r: The graphs (a),(b) and (c),(d) are for a

plucking of the first and third sections, respectively. The curve legends, are——, n ¼ 1; ���; 2; � � �; 3; � � ��; 4; ——,

5. The frequencies of these modes are f 1 ¼ 1:3694 c=2pl; f 2 ¼ 1:8016 f 1; f 3 ¼ 2:4772 f 1; f 4 ¼ 3:1748 f 1; f 5 ¼ 4:1007 f 1:
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